Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Ultralow Surface Recombination Velocity in InP Nanowires Probed by Terahertz Spectroscopy

Identifieur interne : 001290 ( Main/Repository ); précédent : 001289; suivant : 001291

Ultralow Surface Recombination Velocity in InP Nanowires Probed by Terahertz Spectroscopy

Auteurs : RBID : Pascal:12-0415464

Descripteurs français

English descriptors

Abstract

Using transient terahertz photoconductivity measurements, we have made noncontact, room temperature measurements of the ultrafast charge carrier dynamics in InP nanowires. InP nanowires exhibited a very long photoconductivity lifetime of over 1 ns, and carrier lifetimes were remarkably insensitive to surface states despite the large nanowire surface area-to-volume ratio. An exceptionally low surface recombination velocity (170 cm/s) was recorded at room temperature. These results suggest that InP nanowires are prime candidates for optoelectronic devices, particularly photovoltaic devices, without the need for surface passivation. We found that the carrier mobility is not limited by nanowire diameter but is strongly limited by the presence of planar crystallographic defects such as stacking faults in these predominantly wurtzite nanowires. These findings show the great potential of very narrow InP nanowires for electronic devices but indicate that improvements in the crystallographic uniformity of InP nanowires will be critical for future nanowire device engineering.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0415464

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Ultralow Surface Recombination Velocity in InP Nanowires Probed by Terahertz Spectroscopy</title>
<author>
<name sortKey="Joyce, Hannah J" uniqKey="Joyce H">Hannah J. Joyce</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Clarendon Laboratory, Department of Physics, University of Oxford</s1>
<s2>Oxford, OX1 3PU</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<placeName>
<settlement type="city">Oxford</settlement>
<region type="nation">Angleterre</region>
<region type="région" nuts="1">Oxfordshire</region>
</placeName>
<orgName type="university">Université d'Oxford</orgName>
</affiliation>
</author>
<author>
<name sortKey="Wong Leung, Jennifer" uniqKey="Wong Leung J">Jennifer Wong-Leung</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Electronic Materials Engineering, Research School of Physics and Engineering, Australian National University</s1>
<s2>Canberra, ACT 0200</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Canberra, ACT 0200</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yong, Chaw Keong" uniqKey="Yong C">Chaw-Keong Yong</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Clarendon Laboratory, Department of Physics, University of Oxford</s1>
<s2>Oxford, OX1 3PU</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<placeName>
<settlement type="city">Oxford</settlement>
<region type="nation">Angleterre</region>
<region type="région" nuts="1">Oxfordshire</region>
</placeName>
<orgName type="university">Université d'Oxford</orgName>
</affiliation>
</author>
<author>
<name sortKey="Docherty, Callum J" uniqKey="Docherty C">Callum J. Docherty</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Clarendon Laboratory, Department of Physics, University of Oxford</s1>
<s2>Oxford, OX1 3PU</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<placeName>
<settlement type="city">Oxford</settlement>
<region type="nation">Angleterre</region>
<region type="région" nuts="1">Oxfordshire</region>
</placeName>
<orgName type="university">Université d'Oxford</orgName>
</affiliation>
</author>
<author>
<name sortKey="Paiman, Suriati" uniqKey="Paiman S">Suriati Paiman</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Electronic Materials Engineering, Research School of Physics and Engineering, Australian National University</s1>
<s2>Canberra, ACT 0200</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Canberra, ACT 0200</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Physics, Faculty of Science, Universiti Putra Malaysia</s1>
<s2>43400 Serdang, Selangor</s2>
<s3>MYS</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Malaisie</country>
<wicri:noRegion>43400 Serdang, Selangor</wicri:noRegion>
</affiliation>
</author>
<author>
<name>QIANG GAO</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Electronic Materials Engineering, Research School of Physics and Engineering, Australian National University</s1>
<s2>Canberra, ACT 0200</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Canberra, ACT 0200</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hoe Tan, H" uniqKey="Hoe Tan H">H. Hoe Tan</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Electronic Materials Engineering, Research School of Physics and Engineering, Australian National University</s1>
<s2>Canberra, ACT 0200</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Canberra, ACT 0200</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jagadish, Chennupati" uniqKey="Jagadish C">Chennupati Jagadish</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Electronic Materials Engineering, Research School of Physics and Engineering, Australian National University</s1>
<s2>Canberra, ACT 0200</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Canberra, ACT 0200</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lloyd Hughes, James" uniqKey="Lloyd Hughes J">James Lloyd-Hughes</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Clarendon Laboratory, Department of Physics, University of Oxford</s1>
<s2>Oxford, OX1 3PU</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<placeName>
<settlement type="city">Oxford</settlement>
<region type="nation">Angleterre</region>
<region type="région" nuts="1">Oxfordshire</region>
</placeName>
<orgName type="university">Université d'Oxford</orgName>
</affiliation>
</author>
<author>
<name sortKey="Herz, Laura M" uniqKey="Herz L">Laura M. Herz</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Clarendon Laboratory, Department of Physics, University of Oxford</s1>
<s2>Oxford, OX1 3PU</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<placeName>
<settlement type="city">Oxford</settlement>
<region type="nation">Angleterre</region>
<region type="région" nuts="1">Oxfordshire</region>
</placeName>
<orgName type="university">Université d'Oxford</orgName>
</affiliation>
</author>
<author>
<name sortKey="Johnston, Michael B" uniqKey="Johnston M">Michael B. Johnston</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Clarendon Laboratory, Department of Physics, University of Oxford</s1>
<s2>Oxford, OX1 3PU</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<placeName>
<settlement type="city">Oxford</settlement>
<region type="nation">Angleterre</region>
<region type="région" nuts="1">Oxfordshire</region>
</placeName>
<orgName type="university">Université d'Oxford</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">12-0415464</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0415464 INIST</idno>
<idno type="RBID">Pascal:12-0415464</idno>
<idno type="wicri:Area/Main/Corpus">001684</idno>
<idno type="wicri:Area/Main/Repository">001290</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1530-6984</idno>
<title level="j" type="abbreviated">Nano lett. : (Print)</title>
<title level="j" type="main">Nano letters : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carrier lifetime</term>
<term>Carrier mobility</term>
<term>Electrical properties</term>
<term>III-V compound</term>
<term>III-V semiconductors</term>
<term>Indium phosphide</term>
<term>Lifetime</term>
<term>Nanostructured materials</term>
<term>Nanowire device</term>
<term>Nanowires</term>
<term>Optoelectronic devices</term>
<term>Photoconductivity</term>
<term>Photovoltaic cell</term>
<term>Plane defects</term>
<term>Stacking faults</term>
<term>Surface area</term>
<term>Surface recombination</term>
<term>Surface states</term>
<term>THz range</term>
<term>Temperature measurement</term>
<term>Transients</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Recombinaison superficielle</term>
<term>Composé III-V</term>
<term>Semiconducteur III-V</term>
<term>Nanofil</term>
<term>Nanomatériau</term>
<term>Domaine fréquence THz</term>
<term>Phénomène transitoire</term>
<term>Photoconductivité</term>
<term>Mesure température</term>
<term>Propriété électrique</term>
<term>Durée vie</term>
<term>Durée vie porteur charge</term>
<term>Etat surface</term>
<term>Aire superficielle</term>
<term>Phosphure d'indium</term>
<term>Dispositif optoélectronique</term>
<term>Dispositif photovoltaïque</term>
<term>Mobilité porteur charge</term>
<term>Défaut plan</term>
<term>Défaut empilement</term>
<term>Dispositif nanofil</term>
<term>InP</term>
<term>8107V</term>
<term>8107B</term>
<term>8535</term>
<term>8535K</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Using transient terahertz photoconductivity measurements, we have made noncontact, room temperature measurements of the ultrafast charge carrier dynamics in InP nanowires. InP nanowires exhibited a very long photoconductivity lifetime of over 1 ns, and carrier lifetimes were remarkably insensitive to surface states despite the large nanowire surface area-to-volume ratio. An exceptionally low surface recombination velocity (170 cm/s) was recorded at room temperature. These results suggest that InP nanowires are prime candidates for optoelectronic devices, particularly photovoltaic devices, without the need for surface passivation. We found that the carrier mobility is not limited by nanowire diameter but is strongly limited by the presence of planar crystallographic defects such as stacking faults in these predominantly wurtzite nanowires. These findings show the great potential of very narrow InP nanowires for electronic devices but indicate that improvements in the crystallographic uniformity of InP nanowires will be critical for future nanowire device engineering.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1530-6984</s0>
</fA01>
<fA03 i2="1">
<s0>Nano lett. : (Print)</s0>
</fA03>
<fA05>
<s2>12</s2>
</fA05>
<fA06>
<s2>10</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Ultralow Surface Recombination Velocity in InP Nanowires Probed by Terahertz Spectroscopy</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>JOYCE (Hannah J.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>WONG-LEUNG (Jennifer)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>YONG (Chaw-Keong)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>DOCHERTY (Callum J.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>PAIMAN (Suriati)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>QIANG GAO</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>HOE TAN (H.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>JAGADISH (Chennupati)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>LLOYD-HUGHES (James)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>HERZ (Laura M.)</s1>
</fA11>
<fA11 i1="11" i2="1">
<s1>JOHNSTON (Michael B.)</s1>
</fA11>
<fA14 i1="01">
<s1>Clarendon Laboratory, Department of Physics, University of Oxford</s1>
<s2>Oxford, OX1 3PU</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Electronic Materials Engineering, Research School of Physics and Engineering, Australian National University</s1>
<s2>Canberra, ACT 0200</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Physics, Faculty of Science, Universiti Putra Malaysia</s1>
<s2>43400 Serdang, Selangor</s2>
<s3>MYS</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>5325-5330</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>27369</s2>
<s5>354000506816270420</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>42 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0415464</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Nano letters : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Using transient terahertz photoconductivity measurements, we have made noncontact, room temperature measurements of the ultrafast charge carrier dynamics in InP nanowires. InP nanowires exhibited a very long photoconductivity lifetime of over 1 ns, and carrier lifetimes were remarkably insensitive to surface states despite the large nanowire surface area-to-volume ratio. An exceptionally low surface recombination velocity (170 cm/s) was recorded at room temperature. These results suggest that InP nanowires are prime candidates for optoelectronic devices, particularly photovoltaic devices, without the need for surface passivation. We found that the carrier mobility is not limited by nanowire diameter but is strongly limited by the presence of planar crystallographic defects such as stacking faults in these predominantly wurtzite nanowires. These findings show the great potential of very narrow InP nanowires for electronic devices but indicate that improvements in the crystallographic uniformity of InP nanowires will be critical for future nanowire device engineering.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A07V</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A07B</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D03F18</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Recombinaison superficielle</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Surface recombination</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Nanofil</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Nanowires</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Domaine fréquence THz</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>THz range</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Phénomène transitoire</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Transients</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Photoconductivité</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Photoconductivity</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Mesure température</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Temperature measurement</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Propriété électrique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Electrical properties</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Durée vie</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Lifetime</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Durée vie porteur charge</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Carrier lifetime</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Etat surface</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Surface states</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Aire superficielle</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Surface area</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Phosphure d'indium</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Indium phosphide</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Indio fosfuro</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Dispositif optoélectronique</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Optoelectronic devices</s0>
<s5>29</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Dispositif photovoltaïque</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Photovoltaic cell</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Dispositivo fotovoltaico</s0>
<s5>30</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Mobilité porteur charge</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Carrier mobility</s0>
<s5>31</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Défaut plan</s0>
<s5>32</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Plane defects</s0>
<s5>32</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Défaut empilement</s0>
<s5>33</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Stacking faults</s0>
<s5>33</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Dispositif nanofil</s0>
<s5>34</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Nanowire device</s0>
<s5>34</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Dispositivo nanohilo</s0>
<s5>34</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>InP</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>8107V</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>8107B</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>8535</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>8535K</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>324</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001290 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 001290 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:12-0415464
   |texte=   Ultralow Surface Recombination Velocity in InP Nanowires Probed by Terahertz Spectroscopy
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024